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Abstract. We have developed a simple model potential with a hard core and the correct large-r Coulombic
behaviour, to describe the interaction of an electron with a closed shell. One has an exact, analytic ground
state wave function for this potential. This potential is used to develop two-electron perturbed and unper-
turbed wave functions, with the correct asymptotic behaviour and cusp conditions. These wave functions
allow us to obtain accurate values for the two-electron energies, polarisabilities, hyperpolarisabilities, and
dispersion coefficients of alkaline earth sequences. Many of these results are the only ones available in the
literature.

PACS. 31.15.-p Calculations and mathematical techniques in atomic and molecular physics
(excluding electron correlation calculations)

1 Introduction

The analysis of the properties of He and its isoelectronic
ions provides a simple but important and interesting ex-
ample of the many body problems. On the one hand it
illustrates the serious complications introduced by the
many-variable, non-separable Schroedinger equation. On
the other hand, it motivates us to consider some specific
properties of the differential equation and its solution,
which provide useful insight into its structure. As such
the helium atom and its isoelectronic ions have been anal-
ysed from different perspectives, apart from the very elab-
orate variational approach [1–5]. For example, the usual
one parameter variational solution suggests an idea of the
screening of the nuclear charges. More recently, it has been
emphasised [6–11] that wave functions which incorporate
some specific properties of the exact wave functions, pro-
vide accurate and useful representations of the energy
eigenstates of two-electron atoms and ions. In particular,
the behaviour of the wave function when two particles
are close to each other, or when one of the particles is far
away, has been found to be an important component of the
wave function. These considerations need to be extended
to other systems.

The alkaline earth sequences are in some ways similar
to the two-electron atoms and ions. They have two elec-
trons outside the closed shells. However, the interaction
of these two electrons with the closed-shell core is more
complicated than a simple Coulombic term. One may at-
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tempt to simulate this interaction by a model potential
and then deduce the properties of the system by analysing
the wave function of the two electrons in this model po-
tential. Effectively, the problem is then reduced to that of
a helium atom except that the Coulombic interaction of
the two electrons with the nucleus is replaced by a model
potential. Such an approach has been considered but with
limited success. An `-dependent, model potential with sev-
eral parameters was used [12] to obtain the polarisabili-
ties and dispersion coefficients of Be, Mg, and Ca. Though
the analysis demonstrated the importance of the correla-
tion between the two outer electrons, it was confined only
to these three alkaline earth atoms, and the complicated
model potential and the numerical solutions do not pro-
vide any insight into the structure of the perturbed or
unperturbed wave functions.

Here, we propose a simple model potential for the in-
teraction of an electron with a closed-shell core. It has
the nice property that in addition to giving the correct
1-electron ground-state energy, it has a simple, two-term
ground-state wave function. We then develop two-electron
wave functions based on the correct asymptotic behaviour
and the correct cusp condition. Incorporation of these
properties allows us to obtain simple, but very accurate
wave functions for the two-electron ground states with
only one variational parameter. The energies obtained
from these wave functions are in agreement with the ex-
perimental values to within 1% for all the alkaline earth
sequence members with charges −1, 0, 1, 2. These wave
functions are then used to obtain simple, analytic expres-
sions for perturbations in the wave functions and energies
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in the presence of multipolar potentials. These expres-
sions for the perturbed wave functions allow us to deduce
multipolar polarisabilities, hyperpolarisabilities for all the
sequences, and the dispersion coefficients for the neutral
atoms. Some of these quantities are new, and should be of
considerable importance in the analysis of the interactions
of alkaline-earth sequences with each other and with other
systems. Unless stated otherwise, we will use atomic units
in our description.

2 A model one-electron potential

We first develop a simple, model potential which is in-
tuitively appealing, has the correct Coulombic behaviour
at large distances, and which incorporates a ground state
with the appropriate energy.

Consider a potential of the form

V0 = −Z
r

+
`2(`2 + 1)

2r2
· (2.1)

It may be noted that the 1/r2 term here is a part of the
potential, and is not the angular momentum barrier term.
Its coefficient is written as l2(l2 + 1)/2 so that one can
write the s-wave energy eigenvalues and eigenfunctions in
a simple, closed form in terms of l2 which in general is not
an integer. In particular one has the s-wave energies

E = − Z2

2(`2 + n)2
, n = 1, 2, ... (2.2)

and the corresponding wave functions are

ψ(r) = Nr`2 1F1(`2 + 1− Z

a2
, 2`2 + 2, 2a2r)e−a2r (2.3)

a2 = (−2E2)1/2

with N being the normalization constant, where
1F1(a, b, z) is the confluent hypergeometric function. The
first excited state of this set has an energy

E2 = − Z2

2(`2 + 2)2
(2.4)

and the corresponding eigenfunction has a node or zero at

R =
`2 + 1
a2

· (2.5)

This energy and the eigenfunction will therefore, also cor-
respond to the ground state of the potential in equa-
tion (2.1) but with an additional, infinite potential bar-
rier for r < R. Now for an electron outside a closed shell
core, because of the exclusion principle, there is very little
penetration into the core. Therefore, a potential with a
Coulombic behaviour at large r, and an infinite potential
barrier for r < R, would be quite appropriate for the de-
scription of the properties of an electron outside a closed
shell.

For the description of the properties of the alkaline
earth sequences, we propose a model potential to describe
the electron-core interaction

V2(r) = −Q
r

+
`2(`2 + 1)

2r2
for r > R (2.6)

=∞ for r ≤ R

where Q is the core charge and `2 and R are determined in
terms of the second ionisation energy−E2 of the sequence,

`2 =
Q

a2
− 2, a2 = (−2E2)1/2

R =
`2 + 1
a2
· (2.7)

For example, for the description of the properties of Be,
we have Q = 2 and E2 = −18.2112/27.2114, where
18.2112 eV is the second ionisation energy of Be. The
ground state of this potential is described by the wave
function

φ2(r) = N2(r −R)r`2e−a2r for r > R

= 0 for r ≤ R (2.8)

where N2 is the normalization constant.
The 1-electron, s-wave spectra of our model potential

with the ionisation energy as the only input are in close
agreement with the experimental s-wave spectra of alkali
sequences. For example, the energies of the excited s-wave
states of Na and Ba+ predicted are −1.950,−1.024 eV and
−4.77, −2.80 eV, whereas the corresponding experimental
energies are −1.948,−1.023 eV and −4.751,−2.809 eV re-
spectively. Even the predicted energies of the ` = 1 states
are generally within about 10% of the experimental values
of the energies. This is adequate for our purpose of using
this potential for the description of two-electron states.
The reason for this is that when one of the electrons, say
electron 1, is in ` = 1 state, it is farther away and its main
interaction is with the inner electron and the Coulombic
part of the interaction with the core.

3 Ground-state properties of alkaline earth
sequences

We propose that the ground-state properties of the two
outer electrons in the alkaline earth sequence are described
by the Hamiltonian

H =
1
2
p2

1 +
1
2
p2

2 + V2(r1) + V2(r2) +
1
r12

(3.1)

V2(ri) = −Q
ri

+
`2(`2 + 1)

2r2
i

for ri > R

=∞ for ri ≤ R

where V2(ri) describes the interaction of the electron with
the core of chargeQ, and the quantities `2 and R are given
in equation (2.7) in terms of the second ionisation energy
−E2 of the alkaline earth sequence.
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To develop a simple, compact, but accurate wave func-
tion of the two electron state, we note some properties of
the wave function. We first note that since the potential
has an infinite barrier for r < R, the wave function van-
ishes for ri < R:

ψ(R, r2) = ψ(r1,R) = 0. (3.2)

Particularly important are the properties of the wave
function in the asymptotic region when one of the
electrons is far away, or the two electrons are close to
each other.

Asymptotic behaviour

It has been shown [13,14] that when one of the electrons
is far away,

ψ(r1, r2) r1→∞−→ φ2(r2)η1(r1) (3.3)

where φ2(r2) is the ground state wave function of the re-
maining electron and

η1(r1) = ru1
1 [1 + c1/r1 + ...]e−a1r1 (3.4)

a1 = (−2E1)1/2

u1 =
Q− 1
a1

− 1

c1 =
(`0 − u1)(`0 + u1 + 1)

2a1

with −E1 being the ionisation energy of the atom or ion
and Q − 1 being the charge seen by the electron 1 when
it is far away. The coefficient c1 is related to the coeffi-
cient `0(`0 + 1)/2 of the 1/r2 term in the radial equation.
The value of `0 in the present case is obtained from the
equation

`0(`0 + 1) = `(`+ 1) + `2(`2 + 1) (3.5)

where ` is the orbital angular momentum quantum
number of the outer electron. We have a similar relation
when electron 2 is far away.

Cusp condition

When the two electrons are close to each other, the 1/r12

singularity in the potential has to be canceled by the ki-
netic energy term for the regular solution. This implies for
r12 → 0,

ψ(r1, r2)→ b0(1 +
1
2
r12) for the singlet

→ b0r12(1 +
1
4
r12) for the triplet (3.6)

which are known as the cusp conditions [15]. They have
been found to play an important role [10,11] in the
development of reliable wave functions for two-electron
systems.

Wave function for the ground state

We propose a simple, ground-state wave function for the
outer electrons in the alkaline earth sequences, which in-
corporates these general properties,

ψ(r1, r2) = N [φ1(r1)φ2(r2) + φ2(r1)φ1(r2)]f1(r12)
= 0 for ri < R,

φ1(r) = (r −R)(r + d)u1−2e−a1r

φ2(r) = (r −R)r`2e−a2r

f1(r12) = 1 +
1
2
r12 (3.7)

where a1 and u1 are related to the ionisation energy −E1

as in equation (3.4) and `2,a2 and R are related to the
second ionisation energy −E2 (ionisation energy of the re-
maining electron after the first electron has been removed)
as in equation (2.7), and d is a variational parameter. This
wave function vanishes at ri = R, has the correct leading
asymptotic behaviour (note that r12 → ri for ri → ∞),
and has the correct singlet cusp condition for r12 → 0. It
can be used to calculate the two-electron energy

E =
〈ψ|H|ψ〉
〈ψ|ψ〉 (3.8)

where the Hamiltonian H is given in equation (3.1). The
parameters u1 and a1 which depend on the first ionisation
energy −E1 are determined iteratively by using

E1 = E −E2. (3.9)

The only input parameter is the second ionisation energy
−E2 which ensures that the electrons singly interact cor-
rectly with the core. The variational parameter d is deter-
mined by minimising the energy.

The calculations of the average kinetic energy are sim-
plified by the use of the identity [8]∫

(φf)∇2(φf)dτ =∫
[f2φ∇2φ− φ2(∇f) · (∇f)]dτ (3.10)

which follows from simplifying the left-hand-side and inte-
grating by parts. The calculated values of the total energy,
along with the normalization constant, and the expecta-
tion values of 〈

∑
i r

2
i 〉 and 〈

∑
i r

4
i 〉 are given in Table 1.

Our values of E agree with the experimental values [16] to
within 1.0% for all the 14 members of the alkaline earth
isoelectronic sequences. This suggests that our model po-
tential in equation (3.1) and the model wave function in
equation (3.7) are quite reliable. Our values for 〈

∑
i r

2
i 〉

for Be, Mg, and Ca are 16.08, 22.93, and 35.22 which
are in good agreement with the values of 15.83, 23.35,
and 35.92 respectively obtained by Maeder and Kutzelnigg
[12]. There do not appear to be reliable values for other
systems we have considered. Our predictions for the neg-
ative ions are new. Since our wave functions incorporate
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Table 1. Input values of the second ionisation energy −E2, variational value of parameter d, predicted and experimental values
of total energy E (−E is the sum of the first and second ionisation energies), 〈

P
i r

2
i 〉, 〈
P
i r

4
i 〉 along with the normalization

constant N , for the outer two electrons in the ground state of the alkaline earth sequences.

−E2 (eV) d N −E −Eexpt 〈r2〉 〈r4〉
Be 18.2112 1.68 0.6117 1.0122 1.0118 16.08 227.2

Mg 15.0353 2.20 0.4101 0.8386 0.8335 22.93 441.1

Ca 11.8717 3.35 0.2340 0.6643 0.6609 35.22 986.5

Sr 11.0301 3.90 0.1902 0.6178 0.6146 40.28 1270

Ba 10.0039 4.90 0.1445 0.5609 0.5592 48.05 1771

B+ 37.931 1.45 1.666 2.316 2.318 7.668 49.6

Al+ 28.448 2.40 2.783 1.742 1.737 13.07 135.4

C++ 64.494 1.34 5.769 4.124 4.130 4.51 16.9

Si++ 45.142 3.00 9.2617 2.893 2.890 8.80 59.5

Li− 5.3917 3.30 0.2672 0.2214 0.2209 68.9 5562

Na− 5.1391 3.30 0.2310 0.2114 0.2090 75.6 6728

K− 4.3407 4.30 0.2259 0.1794 0.1779 100.0 1.09 × 104

Rb− 4.1771 4.50 0.2182 0.1728 0.1714 106.5 1.22 × 104

Cs− 3.8939 5.10 0.2184 0.1613 0.1604 119.6 1.49 × 104

the correct asymptotic behaviour, we expect these predic-
tions to be quite reliable. It may be mentioned that since
〈
∑
r2n
i 〉 are sensitive to the asymptotic behaviour of the

wave function, they are calculated with the wave func-
tions satisfying the correct asymptotic behaviour in terms
of the experimental ionisation energies, though our calcu-
lated values of the energies are close to the experimental
values.

Wave function for the triplet 3S state

We also consider the wave function for the lowest energy,
triplet 3S states of the alkaline earth sequences. For this
state we propose a wave function

ψ(r1, r2) = A[φ3(r1)φ2(r2)− φ2(r1)φ3(r2)]f3(r12)
= 0 for ri < R,

φ2(r) = (r − R)r`2e−a2r

φ3(r) = (r − R)(1 + c3/r)ru3−1e−a3r (3.11)

where a2, `2 and R are related to the second ionisation
energy −E2 as in equation (2.7) and a3 and u3 are related
to the ionisation energy −E3 of the triplet state as

a3 = (−2E3)1/2, u3 =
Q− 1
a3

− 1. (3.12)

Since one of the electrons in the triplet state is in an ex-
cited state, we impose the asymptotic behaviour for both
the leading terms in equation (3.4), which implies that the
c3 in equation (3.11) is given by

c3 = R+
(`2 − u3)(`2 + u3 + 1)

2a3
(3.13)

with `2 given in equation (2.7). For the correlation func-
tion f3(r12) we take

f3(r12) = 1− 1
1 + 4λ

e−λr12 (3.14)

which has the correct, triplet cusp condition in equa-
tion (3.6) for r12 → 0, and we take λ to be a variational
parameter. The wave function in equation (3.11) vanishes
at ri = R, has the correct asymptotic behaviour, and has
the correct cusp condition for r12 → 0. We use it for cal-
culating the energy as in equation (3.8). The quantities u3

and a3 depend on the ionisation energy −E3 of the triplet
state, and are determined iteratively by using

E3 = E −E2. (3.15)

The calculations are again simplified by the use of the
identity in equation (3.10). The calculated values of the
total energy, along with the normalization constantA, and
the expectation values of 〈

∑
r2
i 〉, 〈

∑
r4
i 〉 are given in Ta-

ble 2. Our values of E agree with the experimental values
[16,17] to within 1% for all the members of the alkaline
earth sequences we have considered.

4 Multipolar polarisabilities
and hyperpolarisabilities

Our wave function in equation (3.7) can be used to cal-
culate multipolar polarisabilities and hyperpolarisabilities
of the sequences. In the presence of a perturbative mul-
tipolar potential, the perturbation to the wave function,
δψ`, satisfies the inhomogeneous equation

(H −E)δψ` = [r`1P`(cos θ1) + r`2P`(cos θ2)]ψ (4.1)

where H is the unperturbed Hamiltonian given in equa-
tion (3.1), and ψ is the unperturbed ground-state wave
function given in equation (3.7). The multipolar polaris-
ability α` is given by

α` = 2〈ψ|[r`1P`(cos θ1) + r`2P`(cos θ2)]|δψ`〉. (4.2)
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Table 2. Variational values of the parameter λ, predicted and
experimental values of the energy E (−E is the total separa-
tion energy of the two electrons in the triplet state), 〈

P
i r

2
i 〉,

〈
P
i r

4
i 〉 along with the normalization constant A, for the outer

two electrons in the lowest energy 3S state of the alkaline earth
sequences.

λ A −E −Eexpt 〈r2〉 〈r4〉
Be 0.12 0.0358 0.7730 0.7745 78.3 7.75 × 103

Mg 0.08 0.0318 0.6452 0.6458 100 1.22 × 104

Ca 0.04 0.0271 0.5165 0.5172 137 2.18 × 104

Sr 0.03 0.0263 0.4820 0.4823 152 2.63 × 104

Ba 0.02 0.0260 0.4397 0.4400 172 3.30 × 104

B+ 0.20 0.232 1.722 1.727 30.5 1.09 × 103

Al+ 0.10 0.203 1.318 1.321 45.6 2.29 × 103

C++ 0.30 0.893 3.033 3.045 16.5 308

Si++ 0.20 0.638 2.181 2.192 27.0 757

For solving equation (4.1) variationally, we note that

G = 〈δψ`|(H −E)|δψ`〉
− 2〈ψ|[r`1P`(cos θ1) + r`2P`(cos θ2)]|δψ`〉 (4.3)

is an extremum for the solutions of equation (4.1). We
also observe that the solution to equation (4.1) has an
asymptotic behaviour

δψ`
r1→∞−→ r`+u1+1

1 P`(cos θ1)e−a1r1φ2(r2) (4.4)

where a1 and u1 are given in equation (3.4) and φ2(r2)
given in equation (3.7) is the ground-state wave function
of the remaining electron. We therefore take

δψ` = C`η`(r1, r2)

η`(r1, r2) = [(r1 −R)r`+u1−1
1 P`(cos θ1)e−a1r1φ2(r2)

+ (r2 −R)r`+u1−1
2 P`(cos θ2)e−a1r2φ2(r1)]f(r12) (4.5)

where C` is a variational parameter, and a1 and u1 are
given in equation (3.4). Extremising G in equation (4.3),
leads to

C` =
〈ψ|[r`1P`(cos θ1) + r`2P`(cos θ2)]|η`〉

〈η`|(H −E)|η`〉
(4.6)

and

α` = 2
[〈ψ|[r`1P`(cos θ1) + r`2P`(cos θ2)]|η`〉]2

〈η`|(H −E)|η`〉
· (4.7)

Once again we use the identity in equation (3.10) to sim-
plify the evaluation of the expectation value of the kinetic
energy in equations (4.6, 4.7). We also note the relation∫

P`(cos θ1)P`(cos θ2)F (r12)dΩ1dΩ2 =

4π
2`+ 1

∫
P`(cos θ12)F (r12)dΩ12 (4.8)

which simplifies the angular integrations. The calculated
values of the variational parameters C1 and C2, and the
polarisabilities α` are given in Table 3. It may be noted
that since the asymptotic behaviour is of considerable im-
portance in the evaluation of the polarisabilities, we have
used the experimental values of the two-electron energies
though there is very little difference between the experi-
mental values and our calculated values (Tab. 1). Our val-
ues of α1 for Be, Mg, Ca are 37.9, 72.0, and 152.7 which
are in good agreement with the values of 36.7, 70.5, 153.7
respectively obtained by Maeder and Kutzelnigg [12]. Our
values for some of the other systems, particularly the neg-
ative ions, are new.

The wave functions δψ` in equation (4.5) can be used
for calculating hyperpolarisability B defined as

B = −2T121 − 4T112 (4.9)

where

T121 = 〈δψ1|[r2
1P2(cos θ1) + r2

2P2(cos θ2)]|δψ1〉 (4.10)
T112 = 〈δψ1|[r1P1(cos θ1) + r2P1(cos θ2)]|δψ2〉. (4.11)

We again note that the angular integrations are simplified
by the relations∫

P1(cos θ1)P1(cos θ1)P2(cos θ2)F (r12)dΩ1dΩ2 =

8π
15

∫
P2(cos θ12)F (r12)dΩ12 (4.12)

and∫
P1(cos θ1)P1(cos θ2)P2(cos θ2)F (r12)dΩ1dΩ2 =

8π
15

∫
P1(cos θ12)F (r12)dΩ12. (4.13)

The predicted values of B are given in Table 3. The only
previous calculations of B available for comparison are
the ones for Be. The calculation of Bhattacharya and
Mukherjee [18] based on CHF gave a value of −3343
whereas Maroulis and Thakkar [19] obtained a value of
−2140. Our value of −2860 is close to the average of the
two. Since our analysis incorporates the correct asymp-
totic behaviour and correlation, we expect our predictions
to be correct to within 10–15%.

5 Dispersion coefficients

We can calculate the dispersion coefficients for alkaline
earth atoms by using their representation in terms of dy-
namic polarisabilities

C2n(AB) =
(2n− 2)!

2π

n−2∑
`=1

1
(2`)!(2`′)!

×
∫ ∞

0

αA` (iω)αB`′ (iω)dω (5.1)
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Table 3. Values of the variational parameters C1, C2, predicted values of multipolar polarisabilities α1, α2, α3, and of hyper-
polarisability B.

C1 C2 α1 α2 α3 −B
Be 0.702 0.425 37.9 271 3488 2.86 × 103

Mg 0.536 0.325 72.0 709 1.17× 104 9.79 × 103

Ca 0.335 0.208 152.7 2248 5.08× 104 4.06 × 104

Sr 0.278 0.174 193.2 3237 8.07× 104 6.36 × 104

Ba 0.212 0.135 261.2 5204 1.48× 105 1.12 × 105

B+ 2.31 1.32 8.87 26.1 146 124

Al+ 1.66 0.953 23.3 112 919 792

C++ 5.86 3.25 3.19 5.06 15.9 14.2

Si++ 4.37 2.41 10.7 31.2 161 146

Li− 0.353 0.273 780 4.55 × 104 5.59× 106 2.77 × 106

Na− 0.340 0.258 966 6.21 × 104 8.54× 106 4.43 × 106

K− 0.311 0.245 1478 1.17 × 105 1.81× 107 8.81 × 106

Rb− 0.301 0.239 1638 1.36 × 105 2.17× 107 1.06 × 107

Cs− 0.285 0.231 1939 1.77 × 105 2.95× 107 1.37 × 107

with `′ = n − ` − 1, where αA` (iω) and αB`′ (iω) are the
dynamic polarisabilities of the atoms,

α`(iω) = 2
∑
j

|〈j|
∑
i r
`
iP`(cos θi)|0〉|2(Ej −E0)
(Ej −E0)2 + ω2

· (5.2)

For large values of ω, α`(iω) has the limiting behaviour

α`(iω)→ β`/ω
2, for ω →∞ (5.3)

with

β` = 2
∑
j

|〈j|
∑
i

r`iP`(cos θi)|0〉|2(Ej −E0)

= `〈0|
∑
i

r2`−2
i |0〉. (5.4)

We therefore consider a parametric representation

α`(iω) =
β`

ω2 + β`/α`
(5.5)

with β` given in equation (5.4), which has the correct lim-
iting value for ω → 0 and ω → ∞. Using this in equa-
tion (5.1), we get

C2n(AB) =
(2n− 2)!

2π

×
n−2∑
`=1

1
(2`)!(2`′)!

αA` α
B
`′

(αA` /β
A
` )1/2 + (αB`′/β

B
`′ )1/2

(5.6)

with `′ = n− `− 1. In the present case

β1 = 2, β2 = 2

〈∑
i

r2
i

〉
, β3 = 3

〈∑
i

r4
i

〉
. (5.7)

Table 4. Calculated values of C6, C8, and C10 obtained from
equation (5.6).

C6 C8 C10

Be−Be 248 1.06 × 104 5.01× 105

Be−Mg 396 2.04 × 104 1.13× 106

Be−Ca 663 4.53 × 104 3.17× 106

Be−Sr 775 5.85 × 104 4.44× 106

Be−Ba 941 8.17 × 104 6.95× 106

Mg−Mg 648 3.85 × 104 2.43× 106

Mg−Ca 1119 8.41 × 104 6.50× 106

Mg−Sr 1319 1.08 × 105 8.98× 106

Mg−Ba 1619 1.50 × 105 1.38× 107

Ca−Ca 2002 1.79 × 105 1.63× 107

Ca−Sr 2384 2.28 × 105 2.20× 107

Ca−Ba 2967 3.14 × 105 3.30× 107

Sr−Sr 2849 2.90 × 105 2.96× 107

Sr−Ba 3562 3.98 × 105 4.40× 107

Ba−Ba 4479 5.43 × 105 6.46× 107

Using the values of α` and 〈
∑
i r

2n
i 〉 we have obtained, we

deduce the dispersion coefficients C6, C8, and C10. The
calculated values of C6, C8, and C10 are given in Table 4.
Our values for Be, Mg, and Ca are in agreement with
the values of Maeder and Kutzelnigg12 generally to within
10−15%.

6 Conclusions

We have developed a simple model potential with an
infinite potential barrier for small r, and the correct
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Coulombic behaviour for large r, to describe the inter-
action of an electron with a closed-shell core. This poten-
tial has a simple, exact analytic expression for the ground
state wave function, with the correct experimental energy.
This potential is able to predict the two-electron energies
of 14 members of the alkaline earth isoelectronic sequences
including negative ions, and the triplet state energies of
some members, to within 1% accuracy. We have used the
potential and the wave functions to analyse the pertur-
bations due to multipolar potentials, and to calculate the
multipolar polarisabilities and hyperpolarisabilities of the
sequences. We have also calculated the dispersion coeffi-
cients using the polarisabilities and the expectation val-
ues 〈

∑
i r

2n
i 〉. Our calculated values are generally in good

agreement with the results from other calculations. For
many systems, our results are new and should be of con-
siderable use in the analysis of the interaction of alkaline
earth sequences with each other and with external fields.

Part of this work was done when the author was visiting Max-
Planck-Institut fur stromungsforschung, Gottingen. The au-
thor thanks Prof. K.T. Tang and Prof. J.P. Toennies for their
kind hospitality.
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